APPENDIX D # REMEDIAL ACTIONS, INTERIM REMEDIAL ACTIONS, AND TECHNICAL DEMONSTRATIONS #### **APPENDIX D** #### REMEDIAL ACTIONS, INTERIM REMEDIAL ACTIONS, AND TECHNOLOGY DEMONSTRATIONS This appendix provides a listing of various types of remedial actions and technology demonstrations that have been implemented at numerous IRP sites at Hill AFB. Locations, descriptions, and timeframes of each action or demonstration, as well as lessons learned are provided on Table D-1. The AFCEE Remediation Matrix as presented on Table D-2, has been used as a starting point for IRAs and technology demonstrations on many projects. TABLE D-1 REMEDIAL ACTIONS, INTERIM REMEDIAL ACTIONS, AND TECHNOLOGY DEMONSTRATIONS (1 of 7) | OU | Site
Code | Site Description | Action
(Date Completed) | Purpose | Initial
Expectation | Status | Outcome/Lessons Learned | Regulatory
Program | |----|--|--|---|---|--|---|---|-----------------------| | - | - | Little Mountain Radioactive
Disposal Site | Fencing/posting signs (institutional controls) (1996) | IRA | Provide for public safety by restricting access. | Completed | Has operated as expected. | GWP | | - | ST015 | Building 914 Fuel Spill | SVE and Bioventing (1991) | TD | Reduce contamination levels in soils. | Completed | Technology was effective in reducing contaminant levels in soil. | UST | | - | ST035 | Bldg 280 (UST) | Bioventing/LNAPL recovery/
Ground-water monitoring | IRA/RA | Remove LNAPL and decrease soil contaminant levels. | In progress | Bioventing in soils has proved effective. | UST | | - | ST036 | Bldg 510 (UST) | Bioventing/GW monitoring (1994) Bioventing/Vapor extraction: | | Reduce soil contamination to below action levels. | Completed | Proved effective in reducing contaminant levels to help bring site to closure. | UST | | - | ST037 | Bldg 214 (UST) | T) Bioventing/Vapor extraction;
GW monitoring (1994) | | Let natural biological processes
reduce contamination, but enhance
the process by adding needed
oxygen. | Completed | Proved effective in reducing contaminant levels and helped bring site to closure. (See outcome for ST56). | UST | | - | ST038 | Bldg 1141 (UST) | Long term monitoring (intrinsic bioremediation) | RA | Let natural biologic processes reduce
contaminant levels in soil and ground
water. | LTM | Ongoing research, preliminary results suggest attenuation is occurring. | UST | | - | ST049 | Bldg 41 (UST) | Intrinsic bioremediation/GW monitoring (1996) | | LTM/ Let natural biologic processes reduce Completed natural contaminant levels. attenuation | | Proved effective in reducing contaminant levels to help bring site to closure. | GWP | | - | ST050 | Bldg 204 (UST) | Bioventing (1993) | | Let natural biological processes
reduce contamination, but enhance
the process by adding needed
oxygen. | Completed | Proved effective in reducing contaminant levels and helped bring site to closure. (See outcome for ST56). | UST | | - | ST055 | Site 388 (UST) | Bioventing/GW monitoring (1997) | RA | Let natural biological processes
reduce contamination, but enhance
the process by adding needed
oxygen. | Completed | Bioventing reduced contaminant concentrations in the soil. | UST | | - | ST056 | Bldg 924 (UST) | Bioventing (1993) | IRA/RA | Let natural biological processes
reduce contamination, but enhance
the process by adding needed
oxygen. | Completed | Proved effective in reducing contaminant levels and helped bring site to closure. Bioventing has sped up the natural degradation process significantly. | | | - | ST059 | Bldg 5026 (UST) | Intrinsic bioremediation (1993) | LTM/
natural
attenua-
tion | Let natural biological processes reduce contaminant levels. | Completed | Successfully reduced contaminant levels to bring site to closure. | UST | | - | ST060 Bldg 592 (UST) Abatement—Contaminated Soils Removed (1993) | | Site
remedia-
tion | Remove contaminated soil. | Clean closure
completed 1993 | Remediation goal was reached by soil
removal; however, compared to other sites
remediated using bioventing technologies,
it is much more cost effective to treat UST
contaminated soil on site. | UST | | | - | ST061 Bldg 870 (UST) JP-4 Recovery/Residential vapor monitoring/ Bioventing (1992) | | IRA/CA | Recover LNAPL and remediate soils to below action levels. | Recovering JP-4
since June 1992;
testing several types
of recovery systems | LNAPL recovery has been minimal (only
960 gallons), but ground-water plume size
has not increased and contaminant levels
are decreasing. | UST | | | - | ST061 | Bldg 870 (UST) | Natural Attenuation (1993-
Present) | RA | Modeling would produce favorable results to warrant full-scale study | LTM | Natural attenuation was well-documented, is actively occurring and has been monitored since 1994. | UST | ## TABLE D-1 REMEDIAL ACTIONS, INTERIM REMEDIAL ACTIONS, AND TECHNOLOGY DEMONSTRATIONS (2 of 7) | OU | Site
Code | Site Description | Action
(Date Completed) | Purpose | Initial
Expectation | Status | Outcome/Lessons Learned | Regulatory
Program | | |---------|--|---------------------------------|--|---|---|--|--|-----------------------|--| | - | ST063 | Bldg 236 (UST) | Bioventing/GW monitoring (1992) | RA | Reduce soil contamination to below action levels. | Completed | Proved effective in reducing contaminant levels to help bring site to closure. | UST | | | - | ST064 | Bldg 228 (UST) | Bioventing/GW monitoring (1992) | RA | Reduce contaminants in soil. | Completed | Site was successfully remediated. | UST | | | - | ST066 | Bldg 4301 | Bioventing/GW monitoring (1997) | IRA/RA | Reduce contaminant levels to below action levels. | Completed; DD signed June 1993 | | UST | | | - | ST067 | Bldg 1705 | Contaminated Soils Removal (1993) | IRA/RA | RA Remove contaminated soils around Completed;
USTs. signed Septe
1993 | | Proved effective to reduce contamination but at a relatively high cost. | GWP | | | - | ST068 Site 10779 (UST) Contaminated Soils Removal; Bioventing/GW monitoring (1992) | | RA | Remove contaminated soils around tanks and reduce remaining contamination through bioventing. | Completed soil
removal in March
92. Bioventing
completed. | Proved effective in reducing contaminant
level and help bring site to closure.
Remediation through bioventing was much
more cost effective than soil removal. | UST | | | | - | ST069 Bldg 722 (UST) Abatement—Contaminated Soils Removal (1995) | | Site
remedi-
ation | Remove contaminated soil. | Clean closure in
1995 | It is much more cost effective to treat UST contaminated soil on site. | UST | | | | - | ST070 Bldg 1132 (UST) Abatement—Contaminated Soils Removal (1995) | | Site
remedia-
tion | Remove contaminated soil. | Clean closure in
1995 | It is much more cost effective to treat UST contaminated soil on site. | UST | | | | - | ST071 | JP-4 Refueling Spill (Bldg 914) | SVE, LNAPL recovery by
vacuum extraction and
ground-water monitoring | RA | Remove LNAPL from perched water bearing zone. | In operation; DD
signed August 1991 | Complex subsurface conductions and
continued POL spills have extended this
effort. | UST | | | | | | Dual Phase and vacuum extraction (1994) | TD | Remove LNAPL from perched water bearing zone and reduce contaminants in soil matrix | Completed | Did not prove effective in removing
LNAPL | | | | - | ST073 | Bldg 1286 (UST) | Contaminated Soils Removal;
Bioventing/GW monitoring
(1997) | RA | Remove contaminated soils around tanks and reduce remaining contamination through bioventing. | Completed soil removal and bioventing in progress | Proved effective in reducing contaminant
level and help bring site to closure.
Remediation through bioventing was much
more cost effective than soil removal. | GWP | | | - | ST074 | Bldg 260 (UST) | LNAPL recovery/Bioventing | IRA | Remove LNAPL and decrease soil contaminant levels. | In operation | Approximately 14,000 gallons of LNAPL have been removed. Bioventing in soils has proved effective. | UST | | | - | ST079 | UTTR 40002 (UST) | Contaminated Soil Removal;
Bioventing/GW monitoring
(1994) | RA | Remove contaminated soils around tanks and reduce remaining contamination through bioventing. | Completed soil removal. Bioventing in progress. | Proved effective in reducing contaminant level and help bring site to closure. Remediation through bioventing has been much more cost effective than soil removal. | UST | | | = | - ST083 Bldg 771 (UST) Intrinsic bioremediation/GW monitoring (1994) | | LTM/
natural
attenua-
tion | Let natural biologic processes reduce contaminant levels. | Completed | Proved effective in reducing contaminant levels to help bring site to closure. | UST | | | | - | ST085 | USTs 1313, 1314 | Bioventing/GW monitoring (1995) | IRA/RA | Reduce soil contamination to below action levels. | In progress; DD
signed March 1996 | | GWP | | | - ST086 | | Bldg 1134 | Bioventing/GW monitoring (1997) | IRA/RA | Reduce soil contamination to below action levels. | Completed | Proved effective in reducing contaminant
level and help bring site to closure.
Remediation through bioventing was much
more cost effective than soil removal. | UST | | #### TABLE D-1 REMEDIAL ACTIONS, INTERIM REMEDIAL ACTIONS, AND TECHNOLOGY DEMONSTRATIONS (3 of 7) | OU | Site
Code | Site Description | Action
(Date Completed) | Purpose | Initial
Expectation | Status | Outcome/Lessons Learned | Regulatory
Program | |----|---|--|--|---------|---|---|---|-----------------------| | - | ST086 | Bldg 1703 | Bioventing/GW monitoring (1997) | IRA/RA | Reduce contaminant levels to below action levels. | Completed | Proved effective in reducing contaminant levels to help bring site to closure. | UST | | - | ST086 | Bldg 1904 | Bioventing/GW monitoring (1997) | IRA/RA | Reduce soil contamination to below action levels. | Completed | Proved effective in reducing contaminant levels to help bring site to closure. | UST | | - | ST086 | Bldg 2025 | Bioventing/GW monitoring (1997) | IRA/RA | Reduce contaminant levels to below action levels. | In progress | | UST | | - | ST086 | Bldg 2104 | Bioventing/GW monitoring (1997) | IRA/RA | Reduce soil contamination to below action levels. | Completed | Proved effective in reducing contaminant levels to help bring site to closure. | UST | | - | ST086 | Bldg 2203 | Bioventing/GW monitoring (1997) | IRA/RA | Reduce contaminant levels to below action levels. | Completed July 95 | Proved effective in reducing contaminant levels to help bring site to closure. | UST | | - | ST086 | Bldg 454 Vapor extraction | | IRA/RA | Reduce contaminant levels to below action levels. | In progress.
Closure planned
early for FY98 | Vapor extraction was very effective. | UST | | - | ST087 | Little Mountain Tank Farms | LNAPL extraction/GW monitoring | TD | Remove LNAPL and reduce contaminant levels. | In progress; DD is on hold | LNAPL recovery has been below
expectations; skimmer pumps did not work
at this site, currently bailing LNAPL on
regular basis | GWP | | - | ST088 | Little Mountain Fire Training Area Intrinsic remediation/G monitoring (1997) | | RA | Let natural biologic processes reduce contaminant levels. | Completed | | GWP | | 1 | Several | U1-303, U1-304 Seep/Spring Collection/Treatment Systems (1985) | | IRA | IRA Collect and treat contaminated In operation, LTM ground-water discharge at these two seep and spring locations. | | Operated as expected. | FFA | | 1 | Several | U1-307 | Seep/Spring
Collection/Treatment System
(1995) | IRA | Collect and treat contaminated ground water discharged from U1-307. | In operation, LTM | Operated as expected. | FFA | | 1 | FT009 | Fire Training Area 2 | Bioventing (1995) | TD | Assess whether bioventing is an effective remedial technology at FTA-2. | Completed | Proved to be very successful for both soil
and ground-water remediation. Ground
water is now below MCLs. | FFA | | 1 | FT009,
LF001, 002 | Landfill 3 & 4, Fire Training Area | Eastern IRA containment
system upgrade | IRA | | On hold | | FFA | | 1 | FT009, Landfills 3 & 4, Chemical Disposal LF001, 002, Pits 1 & 2, and Fire Training Areas WP002 1 & 2 | | Cap and Slurry Wall
(1987) | IRA | Significantly reduce recharge to OU 1 disposal sites and to reduce transport of contaminants to off-Base area's. | In operation, LTM | Initial testing indicated that the cap met
permeability criteria, however, burrowing
animals and deep rooted plants have
compromised cap integrity. The slurry wall
did not meet expectations. Lessons learned
from this project suggests more stringent
over site should be required during
construction activities, maintenance of cap
is required to maintain its effectiveness, and
upgradient hydraulic capture is needed to
maintain slurry wall effectiveness. | FFA | | 1 | FT009,
LF001, 002,
WP002 | Landfills 3 & 4, Chemical Disposal
Pits 1 & 2, and Fire Training Areas
1 & 2 | IWTP Hookup
(1988/Upgraded 1994) | IRA | Transport contaminated ground water from OU 1 to IWTP for treatment. | In operation, LTM | System has operated as expected. | FFA | | 1 | FT009,
LF001, 002,
WP002 | Landfills 3 & 4, Chemical Disposal
Pits 1 & 2, and Fire Training Areas
1 & 2 | Ground-water control collection and treatment, CAP repair (2000) | RA | Collect and convey contaminated
ground-water from OU1 to WTP
for treatment | Under construction | | FFA | ## TABLE D-1 REMEDIAL ACTIONS, INTERIM REMEDIAL ACTIONS, AND TECHNOLOGY DEMONSTRATIONS (4 of 7) | OU | Site
Code | Site Description | Action
(Date Completed) | Purpose | Initial
Expectation | Status | Outcome/Lessons Learned | Regulatory
Program | |----|------------------|---|---|---|---|-------------------|--|-----------------------| | 1 | FT009,
WP0002 | Chemical Disposal Pits 1 & 2, Fire
Training Area 1 | Surfactant Treatability Study
Bench Test (1994) | TD | Assess if surfactants were an applicable technology for OU 1 contaminant removal. | Completed | Results suggested that it could be an
effective technology but emulsion
formation may cause long term problems in
analyzing data. | FFA | | 1 | LF001 | Chemical Disposal Pits 1 & 2, and
Western Area of OU 1 | Replaced private well water
supply with municipal water
(residents) and seeps/springs
(livestock) (1990) | IRA | Reduce exposure to contaminated ground water by providing an alternative water source. | In operation, LTM | Has reduced exposure of off-Base Resident to contaminated ground water. | FFA | | 1 | WP002 | Chemical Disposal Pit 1 | Soil vapor extraction (1995) | Soil vapor extraction (1995) TD Assess applicability of SVE to remediate vadose zone soil at CDPs1 and 2. | | Completed | Removed a significant mass of
contaminants, however, this mass was
insignificant compared to the total mass of
contaminants at CDPs 1 and 2. | FFA | | 1 | WP002 | Chemical Disposal Pits 1 & 2 | Hookup ground-water
treatment (1986) | IRA | Collect and treat contaminated OU 1 ground water. | In operation, LTM | Well spacing was not adequate for complete capture of contaminants. However, the system has demonstrated that capture is possible with adjustments to system design. Lessons learned included; the need to base system design on hydrogeology of site and extraction trenches are more effective than the wells. | FFA | | 1 | WP002 | Chemical Disposal Pits 1 & 2 | A series of nine technology demonstrations (1995): | | | | | | | | | | Ethanol Flushing (1995) | TD | To assess innovative technology effectiveness for OU 1 site remediation, to provide data to support the FS and ROD, and to provide engineering and cost data for full scale implementation. | | Numerous technical and administrative lessons were learned and have been summarized in a memorandum that is available from the EMR OU 1 files. | FFA | | | | | Air Sparging/Soil Vapor
Extraction (1996) | TD | | | | FFA | | | | | In-Well Aeration/Vertical
Cosolvent Solubilization
(1996) | TD | | | | FFA | TABLE D-1 REMEDIAL ACTIONS, INTERIM REMEDIAL ACTIONS, AND TECHNOLOGY DEMONSTRATIONS (5 of 7) | ou | Site
Code | Site Description | Action
(Date Completed) | Purpose | Initial
Expectation | Status | Outcome/Lessons Learned | Regulator
Program | |----|--------------|------------------------------|--|---------------|--|--------------------------------------|---|----------------------| | | | | Cosolvent Mobilization (1996) | TD | | Completed | | | | | | | Complexing Sugar Flush
(1996) | TD | | Completed | | | | | | | Surfactant Solubilization (1996) | TD | | Completed | | | | | | | Surfactant Middle Phase
Microemulsion (1996) | TD | | Completed | | | | | | | 8. Steam Injection (1996) | TD | | Completed | | | | | | | Single Phase Micro-
emulsions (1996) | TD | | Completed | | | | 1 | WP002 | Chemical Disposal Pits 1 & 2 | Western OU 1 containment
system | IRA | | On hold | | FFA | | 2 | Several | Chemical Disposal Pit 3 | Install new holding tank at IWTP (1993) | WW
storage | Increase storage capacity at IWTP. | Completed | Fulfilled expectations by providing additional storage capacity | FFA | | 2 | Several | Davis/Weber Canal | Seal leaks in canal near OU 2 | RA | Reduce infiltration from canal. | Completed | Significant infiltration reduction | FFA | | 2 | WP007 | Seep U2-304 | Seep Collection System (1999) | RA | Collect seep and convey to
existing treatment system | Completed | Operating as expected | FFA | | 2 | WP007 | Chemical Pit 3 | Shallow, off-Base ground-
water Collection gallery;
Treatment of springs; Air
stripper; GAC (1987) | IRA | Treat storage water and surface water. | Replaced by permanent system in 1999 | Has effectively treated ground water and surface water | FFA | | 2 | WP007 | Chemical Pit 3 | DNAPL Recovery System—
Evaluation/modification of
treatment system (1993) | IRA | To remove DNAPL. | In operation, LTM | To date the SRS has removed over 35,000 gallons of DNAPL | FFA | | 2 | WP007 | Chemical Pit 3 | Extraction Trench (1997) | RA | Will reduce off-Base contaminated ground-water plume | Completed Dec-97, in operation. | Construction went smoothly | FFA | | 2 | WP007 | Chemical Pit 3 | Cap and Slurry Wall around
source area; SVE source area;
ground-water collection and
treatment (1996, 1997) | RA | Contain contaminated ground water on Base. | In operation, LTM | | FFA | | 2 | WP007 | Chemical Pit 3 | Surfactant Flushing (1997, 1999) | TD | Test feasibility of this method to mobilize and remove contamination from soil matrix. | In progress | Very encouraging. Significant mass removals (>90%) were documented during 1997 trial.
Expected completion date – Fall 2000 | FFA | | 2 | WP007 | Chemical Pit 3 | Steam Injection/Vapor
Extraction (1997, 1999) | TD | Test feasibility of this method to mobilize and remove contamination from soil matrix. | Completed | Removed 2,400 gallons of product. | FFA | | 2 | WP007 | Chemical Pit 3 | Surfactant Foam Test
(1997, 1999) | TD | Test feasibility of contaminant removal in soil matrix using foam surfactant. | Completed | Surfactant successfully deployed in low permeability zone. Foam effective at controlling mobility at higher permeability zones. | FFA | | 2 | WP007 | Chemical Pit 3 | Cometabolic bioventing test | TD | Assess the effectiveness of this technology to remove contaminants from soil matrix. | In progress | Expected completion date – mid 2000 | FFA | | 2 | WP007 | Chemical Pit 3 | Partitioning tracer test | TD | Determine remaining residual DNAPL. | Completed | Results indicate 1,100 gallons remaining. Full scale surfactant flood underway to remove DNAPL | FFA | #### TABLE D-1 REMEDIAL ACTIONS, INTERIM REMEDIAL ACTIONS, AND TECHNOLOGY DEMONSTRATIONS (6 of 7) | OU | Site
Code | Site Description | Action (Date Completed) | Purpose | Initial
Expectation | Status | Outcome/Lessons Learned | Regulatory
Program | |----|---|--|---|---|--|--|--|-----------------------| | 3 | ST004 | Sodium Hydroxide Tank | Asphalt Cap (1993)
Asphalt Cap Replaced (1999) | IRA/RA | Reduce infiltration and limit possible contaminant migration. | Continued annual inspection, LTM | Cap appears to be operating effectively. | FFA | | 3 | ST018 | Buildings 511 & 514 | SVE (1997) | RA | Remove VOCs in soil. | Completed | Remedial action completed successfully. Site closed | FFA | | 3 | ST018 | Buildings 511 & 514 Vehicle
Maintenance | Soil Vapor Extraction TD (1995) | TD | Test the feasibility of soil vapor Completed extraction as a remedial alternative. | | This testing showed that SVE was effective in reducing contaminant levels in the soil matrix. | FFA | | 3 | WP005 | Berman Pond | Cap (1984) | IRA | IRA Reduce infiltration into perched Completed ground water zone and reduce contaminant transport to the shallow aquifer. | | Cap did not cover the entire areal extent of the pond so it was not effective in reducing infiltration. Additional capping required. | FFA | | 3 | | | RA | Minimize subsurface water infiltration. Test perched water hydraulic properties to assess dewater feasibility | Completed cap
Dec 97 | | FFA | | | 3 | WP005 | Berman Pond | Pond Dewatering (1995) | | Test small scale well field design to assess its dewatering capabilities. | Completed | The hydraulic properties for dewatering design were obtained. | FFA | | 3 | WP005 Berman Pond Expanded Pond Dewatering | | TD/RA | Remove perched ground water. | In operation | Indicate that dewatering in the Berman
Pond perched zone is possible, but cannot
be achieved until infiltration into the
perched zone is significantly reduced
through cap construction. Retained as part of RA. | FFA | | | 4 | LF011 | Ground-water Plume near Landfills 1 and 2 | Ground-water contaminant and extraction system | RA | Contain source areas to control off-
Base transport of TCE contaminated
ground water. | Design complete.
Awaiting resolution of
off-base real estate issue |). | FFA | | 4 | LF011 | Landfill 1 | Ground-water Recovery and
Treatment (horizontal drains
and air stripper) (1993) | TD | Test feasibility of ground water
extraction using horizontal drains and
treatment by a shallow-tray air
stripper. | Upgraded to
permanent facility
in 1996 | To date the drain system drained and treated approximately 10.2 million gallons of ground water. Air stripper has been effective at meeting or exceeding discharge requirements. | FFA | | 4 | LF011 | Landfill 1 | Ground-water Recovery and
Treatment (horizontal drains
and air stripper) (1996) | RA | Continued satisfactory operation. | In operation, LTM | Continued satisfactory operation. | FFA | | 4 | LF011 Landfill 1 In-situ funnel and gate (MERD Technology) (1994) | | TD | Test MERD Technology to remove the contaminants from ground-water | Completed | Technology was effective only for very short durations due to problems encountered with precipitation of various carbonates and hydroxides. | FFA | | | 4 | LF011 | Landfill 1 | Landfill cap (1996) | RA | Reduce infiltration into landfill | Completed, LTM | | FFA | | 5 | SD016 | Bamberger Pond | Pond Liner | IRA | Limit storm water infiltration into ground water. | Deleted | Study results indicate metals contamination is related to natural processes. | FFA | | 5 | 5 SS017 Rail Shop Soil Management System (1995) | | | IRA | Vapor extract VOCs from contaminated soil excavated from aeration curtain and from OU 5 and other site investigations. | In operation, LTM | Successfully reduced VOC levels in soil to allow for on-Base spreading of "clean" soils. | FFA | #### TABLE D-1 REMEDIAL ACTIONS, INTERIM REMEDIAL ACTIONS, AND TECHNOLOGY DEMONSTRATIONS (7 of 7) | OU | Site
Code | Site Description | Action
(Date Completed) | Purpose | Initial
Expectation | Status | Outcome/Lessons Learned | Regulatory
Program | |----|--------------|-----------------------------|--|---------|---|--|--|-----------------------| | 5 | SS017 | Rail Shop, off-Base | Expand Aeration Curtain
(1996) | IRA | Treat TCE contaminated ground water as it leaves the Base and reduce contaminant levels to below MCLs. | In operation, LTM | Problems included Guar solution that broke down causing trench to collapse due to contaminated mixing water; lessons learned included: need to keep mixing waters clean. | FFA | | 5 | SS017 | Rail Shop, off-Base | Ground-Water Collection
Trench | IRA | Collect and treat contaminated ground-water in off-Base locations. | On hold pending results
of on-going plume definit | ion | FFA | | 5 | SS017 | Rail Shop, off-Base | Ground-water extraction system (wells) | IRA | Pump and treat TCE contaminated ground-water in off-Base areas. | In operation, LTM | Performing as expected. | FFA | | 6 | OT026 | Off-Base Ground-water Plume | Pump and treatment system EE/CA Collect and treat contaminated In operation, LTM Performing as expected. with air stripper (1996) ground water. | | FFA | | | | | 6 | OT026 | Off-Base Springs and Pond | Off-Base Ground-water EE/CA Collect and treat contaminated In operation, LTM Performed as expected. Treatment (springs), air ground-water in springs located off- stripper (1993) Base. | | Performed as expected. | FFA | | | | 6 | OT026 | On-Base Ground-water Plume | UVB/Air sparge SVE (1996) | TD | Assess effectiveness of UVB and air sparge SVE technologies to treat TCE contaminated ground-water at OU 6 to below MCL levels. | Completed | Technologies did not prove successful. | FFA | | 6 | OT026 | On-Base Ground-water Plume | Extraction wells, air stripping | RA | Collect and treat contaminated ground water. | In operation, LTM | Performing as expected. | FFA | | 7 | ST031 | Bldg 220 Underground | Removed oil-water
separators, UST, Soil, and
Capped, 1986 | IRA | Remove contaminated soil | Completed | Reduced contaminant levels by removing contaminated soil. Very costly to dispose of contaminated soils. | FFA/
RCRA | | 8 | OT033 | On-Base Ground-water Plume | | | Minimize the transport of ground-
water contamination to off-Base
areas. | Under construction
since Oct 97 (to
complete in early
1998) | Discharge to POTW allowed. | FFA | | 8 | OT033 | On-Base Ground-water Plume | In-well redox technology evaluation | TD | Reduction in ground-water contaminant levels. | Assessment delayed to allow further definition of plume in potential study area. | | | DD DNAPL Long-Term Monitoring Metal-Enhanced Reductive Dehalogenation MERD Dense Non-Aqueous Phase Liquid EE/CA FFA Engineering Evaluation, Cost Analysis Federal Facility Agreement Pre-design Petroleum, Oil and Lubricant Publicly-Owned Treatment Works Remedial Action PD POL FY Fiscal Year POTW GAC Granular Activated Carbon RA GW Ground Water SVE Soil Vapor Extraction Technology Demonstration Utah Division of Environmental Response and Remediation Underground Storage Tank In-Well Air Stripping Technology GWP Ground-Water Protection Program TD IRA IRA/CA Interim Remedial Action UDERR Interim Remedial Action/Corrective Action UST IROD Interim ROD UVB Industrial Wastewater Treatment Plant VOCs Volatile organic compounds LNAPL Light Non-Aqueous Phase Liquid ww Wastewater ## TABLE D-2 AFCEE REMEDIATION MATRIX—HIERARCHY OF PREFERRED ALTERNATIVES (1 of 1) | | POL-Vadose
Zone (i.e.,
jet fuel,
diesel) | POL-
Excavated
Soil | Floating
Product Deep
(>20 ft) | Floating
Product
Shallow
(<20 ft) Low
Permeability | Floating
Product
Shallow
(<20 ft) High
Permeability | Dissolved
Fuel In
Ground
Water
(BTEX) | Chlorinated
Solvents In
Vadose Zone
(i.e., TCE) | Dissolved
Chlorinated
Solvents In
Ground
Water | Heavy
Metals In
Vadose
Zone | Heavy
Metals In
Excavated
Soil | POL
Vapor
Treatment | Chlorinate
Solvent
Vapor
Treatment | |----------------------------------|---|---------------------------|--------------------------------------|--|---|---|--|--|--------------------------------------|---|---------------------------|---| | Natural Attenuation/Assimilation | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | Bioventing | 2 | 4 | | | | | 3 co-metabolism | | | | | 1 | | Soil Vapor Extraction | 3 | 5 | | | | | 2 | | | | | 1 | | Heat Enhanced Vapor Extraction | 4 | | | | | | 4 | | | | | 1 | | Low Permeability Cover/Cap | 5 | | | | | | 6 | | 3 | | | | | Excavate and/or Haul | 6 | 8 | | | | | 7 | | 4 | 4 | | 1 | | Composting (no tilling) | | 2 | | | | | | | | | | 1 | | Land Farming | | 3 | | | | | | | | 2 | | 1 | | Low Temp Thermal Desorp | | 6 | | | | | | | | | | | | Incineration (High Temp) | | 7 | | | | | | | | | | | | Apparent vs. Actual Studies | | | 2 | 2 | 2 | | | | | | | 1 | | Passive Extraction Wells | | | 4 | 5 | 4 | | | | | | | 1 | | Hand Bail If Appropriate | | | 3 | 3 | 3 | | | | | | | 1 | | Vacuum Assist Pumping | | | | 4 | 5 | | | | | | | | | Dual Pump System | | | 5 | | | | | | | | | | | Air Sparging | | | | | | 2 | | 2 | | | | 1 | | Passive Treatment Wall | | | | | | 3 | | 3 | | | | 1 | | Conventional Pump and Treat | | | | | | 4 | | 4 | | | | 1 | | Slurry Wall | | | | | | 5 | | 5 | | | | 1 | | Stabilization | | | | | | | 5 | | 2 | 3 | | | | Permitted Direct Emission | | | | | | | | | | | 1 | 1 | | Flare | | | | | | | | | | | 2 | | | Biological Filter | | | | | | | | | | | 3 | 2 co-
metabolism | | Catalytic Incineration | | | | | | | | | | | 4 | 3 | | On-site Regenerated Polymer | | | | | | | | | | | 5 | 4 | | Carbon Adsorption | | | | | | | | | | | 6 | 5 | This matrix is an attempt to rank technologies that should be considered for use at common Air Force sites. Managers should use this hierarchy for screening technologies and should be able to justify why a particular technology was selected over others with lower numbers. For instance, if soil vapor extraction (3) is the selected technology for POL in the vadose zone, then managers should be able to justify why neither natural attenuation (1) nor bioventing (2) was selected. The natural attenuation/assimilation alternative should always be considered first and, if selected, should be based on a scientifically defensible risk assessment.